User Tools

Site Tools


data_quality_management_system:data_cleansing

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
data_quality_management_system:data_cleansing [2023/10/17 13:44]
peter
data_quality_management_system:data_cleansing [2024/05/26 19:33] (current)
peter
Line 13: Line 13:
   * [[data_quality_dimension/completeness|Completeness of records]]   * [[data_quality_dimension/completeness|Completeness of records]]
   * [[data_quality_dimension/completeness|Completeness of data values]]   * [[data_quality_dimension/completeness|Completeness of data values]]
-  * [[data_quality_dimension/compliance|Compliance]] of data with laws, regulations, and standards]]+  * [[data_quality_management_system:compliance|Compliance]] of data with laws, regulations, and standards]]
   * [[data_quality_dimension/consistency|Consistency]] of data values   * [[data_quality_dimension/consistency|Consistency]] of data values
   * [[data_quality_dimension/currency|Currency]] of data values   * [[data_quality_dimension/currency|Currency]] of data values
Line 65: Line 65:
 | Type conversion                           | Type conversion (also called casting) is an operation that converts a piece of data of one data type to another data type. Type conversion can be used to make sure that numbers are stored as numerical data types and that a date should be stored as a date object.                                                                                                                                                            | | Type conversion                           | Type conversion (also called casting) is an operation that converts a piece of data of one data type to another data type. Type conversion can be used to make sure that numbers are stored as numerical data types and that a date should be stored as a date object.                                                                                                                                                            |
 | Edit rules                                | Edit Rules, a new class of data quality rules, are rules that tells how to fix errors, i.e. which attributes are wrong and what values they should take.                                                                                                                                                                                                                                                                          | | Edit rules                                | Edit Rules, a new class of data quality rules, are rules that tells how to fix errors, i.e. which attributes are wrong and what values they should take.                                                                                                                                                                                                                                                                          |
-| Data lifecycle management                 | Data Lifecycle Management can be defined as the different stages that the data traverses throughout its life from the time of inception to destruction. Data lifecycle stages encompass creation, utilization, sharing, storage, and deletion.                                                                                                                                                                                    |+| Data lifecycle management                 | Data Lifecycle Management can be defined as the different stages that the data traverses throughout its life from the time of inception to destruction. Data lifecycle stages encompass creation, utilisation, sharing, storage, and deletion.                                                                                                                                                                                    |
  
 Note 4: Data issue prevention is far superior to data issue detection and cleansing, as it is cheaper and more efficient to prevent issues than to try and find them and correct them later. Note 4: Data issue prevention is far superior to data issue detection and cleansing, as it is cheaper and more efficient to prevent issues than to try and find them and correct them later.
Line 166: Line 166:
 What is data cleansing? Guide to data cleansing tools, services and strategy. (2020, August 13). Talend Real-Time Open Source Data Integration Software. https://www.talend.com/resources/what-is-data-cleansing/ What is data cleansing? Guide to data cleansing tools, services and strategy. (2020, August 13). Talend Real-Time Open Source Data Integration Software. https://www.talend.com/resources/what-is-data-cleansing/
  
-===Category=== +{{tag>All DQMS}}
-DQMS+
  
data_quality_management_system/data_cleansing.1697550293.txt.gz · Last modified: 2024/03/08 13:33 (external edit)